Citation

  • Authors: Hoffmann, E., Thiefes, A., Buhrow, D., Dittrich-Breiholz, O., Schneider, H., Resch, K., Kracht, M.
  • Year: 2005
  • Journal: J Biol Chem 280 9706-18
  • Applications: in vitro / DNA / jetPEI
  • Cell type: KB

Abstract

Binding sites for the dimeric transcription factor activator protein (AP)-1 are found in numerous immunoregulatory and inflammatory genes. The precise mechanisms by which AP-1 activates or represses immune response genes and in particular the roles of individual AP-1 subunits in inflammatory responses are largely unknown. We report here that c-Fos and Fos-related antigen-1 (Fra-1), two inducible components of AP-1, are recruited to the endogenous interleukin (IL)-8 promoter in an IL-1-dependent manner. c-Fos activates IL-8 transcription and synergizes in this effect with p65 NF-kappaB. In contrast, Fra-1 strongly inhibits inducible IL-8 transcription. Fra-1 activation involves its stabilization, ubiquitination, and interaction with histone deacetylase-1. Blockade of MEK1 by PD98059 suppresses c-Fos and Fra-1 expression and, thus, affects two counteractive signals for IL-8 mRNA synthesis simultaneously. This disturbs the inducible recruitment of TATA box-binding protein and RNA polymerase II to the IL-8 promoter. Additional experiments reveal that, in conjunction with p65 NF-kappaB, the MEK1-ERK-dependent synthesis of c-Fos and Fra-1 serves to adjust the overall expression level of IL-8 in response to two of its physiological inducers, IL-1 and epidermal growth factor. Relative to c-Fos, the delayed recruitment of Fra-1 to the IL-8 promoter provides an example how AP-1 subunits may dampen excessive chemokine synthesis.

Go to