Citation

  • Authors: Behren, A., Muhlen, S., Acuna Sanhueza, G. A., Schwager, C., Plinkert, P. K., Huber, P. E., Abdollahi, A., Simon, C.
  • Year: 2010
  • Journal: Oncogene 29 1519-30
  • Applications: in vitro / DNA / jetPRIME
  • Cell type: NIH/3T3
    Description: Murine embryonic fibroblasts
    Known as: NIH/3T3, 3T3

Abstract

The Ras oncogene is known to activate three major MAPK pathways, ERK, JNK, p38 and exert distinct cellular phenotypes, that is, apoptosis and invasion through the Ras-MKK3-p38-signaling cascade. We attempted to identify the molecular targets of this pathway that selectively govern the invasive phenotype. Stable transfection of NIH3T3 fibroblasts with MKK3(act) cDNA construct revealed similar p38-dependent in vitro characteristics observed in Ha-Ras(EJ)-transformed NIH3T3 cells, including enhanced invasiveness and anchorage-independent growth correlating with p38 phosphorylation status. To identify the consensus downstream targets of the Ras-MKK3-p38 cascade involved in invasion, in vitro invasion assays were used to isolate highly invasive cells from both, MKK3 and Ha-Ras(EJ) transgenic cell lines. Subsequently a genome-wide transcriptome analysis was employed to investigate differentially regulated genes in invasive Ha-Ras(EJ)- and MKK3(act)-transfected NIH3T3 fibroblasts. Using this phenotype-assisted approach combined with system level protein-interaction network analysis, we identified FOXM1, PLK1 and CDK1 to be differentially regulated in invasive Ha-Ras(EJ)-NIH3T3 and MKK3(act)-NIH3T3 cells. Finally, a FOXM1 RNA-knockdown approach revealed its requirement for both invasion and anchorage-independent growth of Ha-Ras(EJ)- and MKK3(act)-NIH3T3 cells. Together, we identified FOXM1 as a key downstream target of Ras and MKK3-induced cellular in vitro invasion and anchorage-independent growth signaling.

Go to