Citation

  • Authors: Shi X. et al.
  • Year: 2022
  • Journal: Stem Cell Res Ther 13 53
  • Applications: in vitro / in vivo / 2’-Ome modified siRNA / in vivo-jetPEI, jetPRIME
  • Cell type: ST2

Method

In vitro: Cells were seeded in a 96-well plate at the density of 1.5 × 104 per well. The cells were transfected with Ndrg1 expression construct or the vector for 4 h in presence of the JetPRIME transfection reagent. The effect of NDRG1 on cell growth was determined by using a CCK-8 cell counting kit. In vivo transfection of Ndrg1 siRNA was done and its effect on osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells in mice was explored: C57BL/6 mice were purchased from SPF Biotechnology and housed in SPF facility with a 12 h:12 h light/dark cycle and free access to food and water. The in vivo efficacy of the Ndrg1 siRNA was tested in mice 3 days after receiving intra-tibial transfection of 10 μg 2’-Ome modified Ndrg1 siRNA or control siRNA (Genepharma, Shanghai, China). The in vivo transfection procedure was described previously. Briefly, for one mouse, 10 μg 2’-Ome modified siRNA and 1.5 μL in vivo-jetPEI (Polyplus, Illkirch, France), each diluted with 12.5 μl of 5% glucose, were mixed by vortexing. Then, the complexed siRNA was delivered to the marrow of the mouse tibiae. BMSCs were flushed from the tibiae, grown in α-MEM containing 10% FBS, subjected to RNA extraction and thereafter qRT-PCR. To examine the in vivo role of NDRG1, the female mice aged 8 weeks were randomly allocated into four groups: Sham/Ctrl siRNA group (sham-operated mice receiving control siRNA), OVX/Ctrl siRNA group (ovariectomized mice receiving control siRNA), Sham/Ndrg1 siRNA group (sham-operated mice receiving Ndrg1 siRNA) and OVX/Ndrg1 siRNA group (ovariectomized mice receiving Ndrg1 siRNA). The mice received ovariectomy or sham surgery 7 days after the first transfection, and received additional transfections every 3 weeks after the first transfection. 4 weeks after the surgery, some mice were sacrificed and BMSCs were isolated from the transfected tibiae and cultured in α-MEM containing 10% FBS. The cells at passage 3 were subjected to protein extraction and Western blotting analysis of Wnt/β-catenin pathway proteins. Additionally, the cells at passage 3 were induced to allow osteogenic or adipogenic differentiation. The other mice were sacrificed 12 weeks after the first transfection and the tibiae were collected.

Abstract

Background: N-myc downstream regulated gene 1 (NDRG1) plays a role in a variety of biological processes including differentiation of osteoclasts. However, it is not known if and how NDRG1 regulates osteogenic differentiation of marrow stromal progenitor cells. Methods: Gene expression profiling analysis was performed to study the expression level of Ndrg1 during osteogenic and adipogenic differentiation. Gain-of-function and/or loss-of function experiments were carried out to study the role of NDRG1 in the proliferation and differentiation of marrow stromal progenitor cells and the mechanism underlying the function was investigated. Finally, in vivo transfection of Ndrg1 siRNA was done and its effect on osteogenic and adipogenic differentiation in mice was explored. Results: Gene expression profiling analysis revealed that NDRG1 level was regulated during osteogenic and adipogenic differentiation of progenitor cells. The functional experiments demonstrated that NDRG1 negatively regulated the cell growth, and reciprocally modulated the osteogenic and adipogenic commitment of marrow stromal progenitor cells, driving the cells to differentiate toward adipocytes at the expense of osteoblast differentiation. Moreover, NDRG1 interacted with low-density lipoprotein receptor-related protein 6 (LRP6) in the stromal progenitor cells and inactivated the canonical Wnt/β-catenin signaling cascade. Furthermore, the impaired differentiation of progenitor cells induced by Ndrg1 siRNA could be attenuated when β-catenin was simultaneously silenced. Finally, in vivo transfection of Ndrg1 siRNA to the marrow of mice prevented the inactivation of canonical Wnt signaling in the BMSCs of ovariectomized mice, and ameliorated the reduction of osteoblasts on the trabeculae and increase of fat accumulation in the marrow observed in the ovariectomized mice. Conclusion: This study has provided evidences that NDRG1 plays a role in reciprocally modulating osteogenic and adipogenic commitment of marrow stromal progenitor cells through inactivating canonical Wnt signaling.

Go to