Citation

  • Authors: Zhuang Y. et al.
  • Year: 2021
  • Journal: J Hepatocell Carcinoma 8 599-611
  • Applications: in vitro / siRNA / INTERFERin
  • Cell type: THP-1
    Description: Human acute monocytic leukaemia cells
    Known as: THP1, THP 1

Method

Five nanomoles of siRNA was dissolved in 250 μL of RNase-free H2O to prepare a 20 μM stock solution. Transfection reagent INTERFERin® was added to the siRNA solution, vortex-mixed, and incubated for 10 min at room temperature. INTERFERin®–siRNA complexes were added to each plate by pipetting the mixture up and down. Finally, the cells were incubated at 37 °C for 24 h to collect RNA and for 48 h to extract total protein.

Abstract

Purpose: The C-C chemokine ligand 5 (CCL5)-C-C chemokine receptor (CCR5) axis facilitates tumor progression via multiple mechanisms. Herein, we elucidated the effect of a CCR5 antagonist (maraviroc [MVC]; blocking the CCL5-CCR5 axis) on the phenotype of macrophages cocultured with irradiated hepatoma cells. In addition, we investigated whether modulation of macrophage polarization can alter tumor cell sensitivity to radiation. Materials and methods: Quantitative reverse-transcription polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assays were applied to examine the levels of macrophage-associated markers. The mechanisms of macrophage polarization were explored by Western blotting in an in vitro model of coculture of human hepatoma cells with macrophages. The radiation sensitivity was examined in a clonogenic radiosensitivity assay. Tumor cell apoptosis was detected by Western blotting and flow cytometry. A mouse model of a subcutaneous tumor was also established. Results: CCL5 skewed THP-1 M0 macrophages toward an M2-like phenotype. In coculture with hepatoma cells, macrophages manifested high levels of interleukin (IL) 10, IL-12, tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), arginase 1 (ARG1), and IL-1β. Tumor cell irradiation further upregulated these markers in macrophages. After incubation of macrophages with MVC for 24 h, levels of M1 cytokines significantly increased, whereas those of M2 phenotype factors ARG1, TGF-β1, and IL-10 decreased, accompanied by the activation of signal transducer and activator of transcription 3 (STAT3) and downregulation of suppressor of cytokine signaling 3 (SOCS3). The macrophage phenotype reverted to M2 states after treatment with a STAT3 inhibitor. The shift of macrophages toward the M1 phenotype enhanced the radiosensitivity and apoptosis of hepatoma cells. Mice receiving a combination of X-ray irradiation and MVC experienced a better antitumor effect than those receiving either MVC or irradiation alone did. Conclusion: M2 polarization of macrophages induced by CCL5-CCR5 signaling can be inhibited using MVC via the STAT3-SOCS3 pathway. The shift of macrophages toward the M1 phenotype promotes the sensitivity of human hepatoma cells to X-ray irradiation.

Go to